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A stochastic theory equivalent to the nonrelativistic quantum mechanics is 
constructed. A geometric manifestation of U(1) local gauge invariance is pro- 
posed. The stochastic theory is not of the type of Nelson's stochastic mechanics. 

1. INTRODUCTION 

From the very beginning of the development of the quantum theory 
there were attempts to interpret the quantum theory as a stochastic process 
(Furth, 1933; Fenyes, 1952; Kershaw, 1964; Nelson, 1966, 1967; Jammer, 
1974). The stochastic quantum theory of Nelson's type (Furth, 1933; 
Fenyes, 1952; Kershaw, 1964; Nelson, 1966, 1967; Ghirardi et al., 1978) is 
able to reproduce all the predictions of nonrelativistic quantum mechanics, 
but it has the following feature: the diffusion drift of the random motion of 
a particle in the medium is not preassigned, but depends on the wave 
function (which characterizes an ensemble as a whole). Therefore, the 
procedure of preparation of the quantum ensemble influences strongly the 
properties of the underlying medium (see the very comprehensive discussion 
on this subject in Ghirardi et al., 1978). 

In the theory presented here (to be referred to as SPM for stochastic 
mechanics with phase) there is no influence of the procedure of preparation 
of the quantum state on the underlying medium. So the stochastic motion of 
some particle from the ensemble is independent of the other members of the 
ensemble (as in statistical physics). In this sense the interpretation of 
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quantum mechanics given in this paper is a statistical interpretation (see 
definitions and references in Jammer, 1974, Chap. 10). 

There is another difference between Nelson's stochastic mechanics and 
SPM. In Nelson's theory the state of a particle is described classically by its 
position in space only. The amount of information contained in the proba- 
bility density O (t, x) and its time derivative (O lO t )  O(t, x) at some moment t 
is equal to the amount of information contained in the wave function 
4,(t, x). In SPM a particle is described classically by its position x, velocity v, 
and phase q~, an extra variable connected to U(1) gauge degree of freedom. 
The probability density O(t,x,v, q~) contains more information than 4,(t,x). 
In this sense we have hidden parameters of the first type in the terminology 
of Belinfante (1975), but as an advantage we have a natural implementation 
of the gauge degree of freedom and a geometrical manifestation of gauge 
invariance. 

2. CONSTRUCTION OF STOCHASTIC PROCESS 
DESCRIBING FREE PARTICLE 

We assume that the state of a particle is described by the following 
parameters. 

1. a point in the phase space (x,v), 
2. a phase q~. 

The parameters ~ will be connected to the U(1) gauge degree of freedom. In 
order to construct a stochastic process describing a particle moving in a 
medium we have to define (Gihman and Skorohod, 1974; Dynkin, 1965) the 
initial probability density O(t,, x i, v,, q~) and the transition probability kernel 
p(  t i, xi,v,, q~ltt, x/,v/, q~/). We define p(  t i, x i, oi, (Pilt/, Xf, 1;/, (p/ ) through the 
Feynman path integral (Feynman and Hibbs, 1965) by the following 
assumptions: 

Assumption 1. All Feynman paths have an equal probability, or in 
mathematical form 

p (t i ,xi ,vi ,  ~bilt/, x/, v/, ~b/) 

where the change of the phase ( 1 / h ) S  is defined by the following assump- 
tion: 
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Assumption 2. If a particle moves along the path x(t) ,  the change of 
phase is 2 

1 = f t / d  t m(:t) 2 
@[ - @, = ~ S .].t, 2 ( 2 )  

3. DEFINITION OF THE WAVE FUNCTION. BORN'S 
PROBABILISTIC INTERPRETATION 

The stochastic ensemble is described by the probability density 
p(t,x,v, @). 

The amount of information contained in p exceeds the amount of 
information available to the experimentalist who prepares a quantum state 
(a quantum ensemble). 

It is assumed in quantum mechanics that all information about a 
particle available in a quantum experiment and sufficient to make predic- 
tions for these experiments is contained in the wave function +(x). 

We assume the wave function characterizes a certain class of stochastic 
ensembles. So many different stochastic ensembles described by different 
probability densities p belong to the same quantum ensemble, described by 
the wave function ~. Distributions belonging to the same class are dis- 
tinguished by properties hidden in a quantum experiment (or, in other 
words unobservable). 

The partition to the classes is defined as follows: 

Definition. The stochastic ensemble with probability density p(t, x, v, ,p) 
belongs to the class specified by the wave function +(t ,x)  if 

+(t,x)=favfaq, e%(t,x,v,q,)=faq, e%(t,x, ep) (3) 

where 

p(t,x,,t,) fdvp(t,x,v, q,) 

From this definition we can deduce Born's expression for the probability to 

2The derivative X(t) of a generally nondifferentiable path X(t) appeared in (2) in the same 
sense as in the ordinary path integral in Feynman and Hibbs (1965). 
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find a particle at the place x is p(x) = [4'(x)[ 2 

Theorem. 

p (x) = (p (x))v, = al4' (x)l 2 (4) 

where a is constant and ( )q, is average on the class defined by 4' 
and 

p(x) --- f d , ~ p ( x , , )  (5) 

The proof, based on the central limit theorem is given in Appendix. 
A probability of the other observables (for example momentum) can be 

obtained as in Ghirardi et al. (1978), Section 4. 

4. DERIVATION OF SCHRODINGER EQUATION FOR A 
FREE PARTICLE 

From the definition of wave function (3) and from the transition 
probability kernel p( t i , x i , v i ,  q~ltl, x/ ,v/ ,epf)  we can obtain the propagator 
for 4'(x). 

Let us indicate with subscripts i and f the quantities at the moments t~ 
and t I (t~ < tf). Then we have 

r  x z ) =  fdvffdr xl, vl , ' i )  (6) 

4 ' ( t i , x i )  = f dv, f dr t,,x,,v~, , , )  (7) 

From the definition of the transition probability kernel we have 

o(,l,x,,v1,,1) =fdx,fdv,fd, ,~( , , ,x , ,v , , , , I ,1 ,xl ,v1, ,1)o( , , ,x , ,v , , , , )  

= [dx, [dv, [d , , [x ' '~(x( , ) )8(v  - v , - ( ~  - ~,)) 
. . . .  x,(t,) 1 

( 1) 
x ~ epi - epi - -fi s p (  t , , x i ,  v,,  q,, ) (8) 
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Substituting (7) in (5) we obtain 

+ (,:. x:)= fav:fa,:e'*,fax, fay, fa,, f.cTfitf'~(x(t ))~( (~,--t~i-- h S) 

X 8 ( v / - v i - ( ~ / - x i l ) P  (ti,xi,vi, epi ) (9) 

Now let us use 8(q,/- ep~-(1/h)S) and 8(v / -v  i - ( ; i f  - x i ) )  to perform the 
integrations on v/and q,/ 

+ (,:. x:)= fax, fav, fa,, fx/ 't: '~(x(t))eit*'+'l/h)slp(ti,xi,vi,  epi) 
x,(t,) 

= f dx'[ f"'~:":'~(x(t))e"'/h's] f dv' f x,,,,, 

= fdxiP(t i ,xi l t f ,xf) t~(t i ,xi)  (10)  

where 

P(t i ,x i l t / ,x / )  = fx:(t;).~ (x ( t ) )em/h)  s 
~Xi(t i ) 

is exactly the Feynman integral for the propagator of the SchrOdinger 
equation for a free particle. Therefore ~k(t,x) obeys the SchrOdinger equa- 
tion 

h 2 
i h O + ( t , x )  2m Aq,(t,x) (11) 

5. A PARTICLE IN THE ELECTROMAGNETIC FIELD. 
GAUGE INVARIANCE 

In order to describe a particle in a nonquantized electromagnetic field 
we modify Assumption 2: 

Assumption 2". If a particle moves along the path x(t)  t i < t < t/ the 
change of the phase is 

1 ef,/dt[r (12) Cf--d~i=hSfree+ t, 
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So the presence of an electromagnetic field leads to the additional 
phase velocity eC~(x) independent of particle velocity and to the additional 
phase velocity eicA(x) depending on a particle velocity: 

~ = e [~(x) +~A(x)] (13) 

So far we assumed the phase ,~ is defined at any point x with respect to 
some arbitrary reference phase. Let us change the reference phase by the 
amount A(x) (it can depend on the position x). In other words we make the 
change 

~ - - * $ = ~ + A ( x )  (14) 

Then 

p(t, x, ~) --, ~(t,x,  ~,) = p(t,x, r - A(x)) (15) 

and 

q~(t,x)---,~(t,x)=- faSe';'O(t,x,$)= fdf, e'gp(t,x,4~ - A(x)) (16) 

and the change of the integration variable q, --* ,~ = r - A(x) leads to 

~ ( t , x )  = fdq~e'f*-A<x)10 ( t ,x ,  q,) = e-'n<x)fdC, e'*o(t,x, , t , )= e-iA(x)~ ( t ,x )  

(17) 

From (13) we have 

d$ a~ eA 
d t -  d----t + ~ + ~ v A  = e [~  +LA] (18) 

This implies 

~=r  a_CA 
e at 

= A- I vA (19) 
e 

(17) and (19) are U(1) gauge transformations for the particle wave function 
and electromagnetic potential. 
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6. CONCLUDING REMARKS. RELATIVISTIC EXTENSIONS 

Let us reformulate Assumption 2 for the relativistic case. 

Assumption 2 (relativistic case). If a particle moves along the path x(t)  
the change of the phase is proportional to proper time: 

mc z mc 2/"/[ ( i )  z ] l /2dt 
h c---;-J (20) 

The constant m c 2 / h -  10-211/sec is a (constant) phase velocity of the free 
motion. The nonrelativistic limit of (20) is 

,*l l ,,[  *,21 
q/ - q~i = - ~ -  J. dt 1 - - -  = f. 1 -  dt 

t, C2 J ~ t' I -~C2 J 

mc 2 I f (~)2 mc 2 
h ( t f - t i ) -  h j . t / d t - - =  ( t f -  t , ) - l S  (21) 

t, 2m h h 

The rest mass term (mc2/h) ( t / -  ti) is absorbed in the definition of the 
nonrelativistic wave function in the usual transition from Dirac to Schr6- 
dinger equation (see, for example, Bjorken and Drell, 1964). We conjecture 
that for the antiparticle we have the change of phase in the opposite direc- 
tion 

m r  2 

r  q~' h ( r / -  r i) (22) 
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APPENDIX: DERIVATION OF BORN'S PROBABILISTIC 
INTERPRETATION OF THE WAVE FUNCTION THEOREM 

The probability density p(x) to find particle in x in quantum state ~k(x) 

p(x)  = (O (x))q, = a[q,(x)[ 2 (A.1) 
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where a is a constant, ( )r is an average on the class ~, and p(x) is defined 
by (5) 

Proof. To "discretize" the problem we divide the coordinate space into 
many regions A~ of a sufficiently small volume v that the wave function 
r = R(x)e ~xm is essentially constant in any region 

Ri~< R(x) ~ R~ + AR 

X, ~< X(X) ~< Xi + AX (A.2) 

or in short, ~(x) = Rie ~x, = ~i, where AR and A X are small. The phase 
will take values 0 = 2~r~,/F, ~ = 0 . . . .  F - 1; F >> 1. Therefore in this "dis- 
cretized" version a stochastic ensemble is described by 

_ f2 x/r dq~fA,p(x, ep)d x (A.3) 
Pih 2~(~  - 1 ) / F  

and a quantum state by ff~. To give precise meaning to the expectation value 
( )~, in (A.1) we have to define a measure on the class of stochastic 
ensembles ~i defined by the wave function ~(x). As in any case of the 
definition of measure on a function space we must discretize the values that 
these functions take. In this case, we assume that the probability P~x takes 
discrete values n~ = N,.x/N; G x = 0 , 1  . . . . .  N; N >>1. Therefore, the proba- 
bility &x of finding a particle at the place i and phase ~ is some number N,. x 
of "quanta" of probability 1/N.  The measure on the class ~, of stochastic 
ensembles P~x is defined by the following assumption: the quanta of 
probability are distributed randomly between different regions A i and 
phases ~, but with the constraint 

N~.x i2~x/r (A.4) ~k, = E -~--e 

where = is defined in (A.2). 
The constraints (A.4) in different regions A, are independent. Let us 

find the probability p(N~) that there is N~ = ExNj~x quanta of probability 
in the region A, irrespective of number of quanta in other regions. 

For this purpose, we shall use the isomorphism between vectors in R 2 
and complex numbers C 

tp i = Rie ix' ~ C ~ ~1 i ~ Ri (cosx i , s inx i  ) ~ R 2 

1 ~2,~x/r~c ~h,____ 1 
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So (A.4) takes form 

/v, 

d/i-~ E N i x k  = E kj  (A.4') 
,~ j = l  

where kj  is the "direction of thej th quantum." In this form the problem is 
equivalent to the problem of finding the probability to reach the place ~/i by 
N~ steps in two-dimensional random walk with constant step length - 1 / N  
and random direction (we take here F ~ co). 

The probability p(N~) for large N~ is obtained from the central limit 
theorem (Bjorken and Drell, 1964): 

N 
P (  N~) A R A x = const .--ve-Nl'~,12/U, A R A x (A.6) 

Consequently, the probability for N~ quanta to be in A~ for all i is 

(A.7) 

We have to find the mean value of the number of quanta in some 
particular region A 1 

(N1)q. = {~IEH,= N} i (A.8) 

p{ N,I]~N~--N} 
(N, IEN,=N} i 

where E/NAY,N, = N} is the sum on all possible distributions of quanta among 
the regions A i. The way to calculate (A.8) from (A.6) is analogous to the 
method used in statistical physics to calculate a mean value of a microsys- 
tern contained in a thermostat) 

If we denote by p ( M )  the probability that M quanta are in all the 
regions except A x, then p ( M )  is the probability that the sum of a very large 
number of independent random variables defined by (A.6) is M. It has a 
very sharp peak at 

M =  Y'~ ~ (A.9) 
i 4 1  

3N is analogous to the total energy of the microsystem and of the thermostat and N, are 
analogous to the energies of the microsystems. See for example, Landau and Lifshitz (1980). 
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where mean value N /can  be calculated f rom (A.6) 

_ u, 
N,. -= = N[+i[ z 

f s -NI~A2/N,dM P 

(A.IO) 

Therefore 

<N~)r = f dMP( M)P( N~ = N - M ) . N ~  = N -  E E = Na = N[~Pll 2 
i~ l  

(A.m 

Consequently,  p (x )  --- (1 /v)hp(x)[  2 and ~ can be normalized to f d x  [q,[2 = 1. 
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